If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+4.5t-14=0
a = 4.9; b = 4.5; c = -14;
Δ = b2-4ac
Δ = 4.52-4·4.9·(-14)
Δ = 294.65
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4.5)-\sqrt{294.65}}{2*4.9}=\frac{-4.5-\sqrt{294.65}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4.5)+\sqrt{294.65}}{2*4.9}=\frac{-4.5+\sqrt{294.65}}{9.8} $
| 6-7x+8+4x+4x-2=9+2•3 | | 15x-3=11x-19 | | 19+x+15=41 | | 5/10=x/10 | | 3/7x-7/20=-4/7x-3/5 | | 3+5q=94q= | | 18-12x+10=6-12x | | 2g/4=21 | | 12-5x=2x2 | | 28=8/5y | | (7-x)/3=5 | | -6m+36=36-3m | | 2.4f=26.4 | | x2−26x+169=−13 | | -=n+5 | | 125m+12=725 | | 21+x+20=70 | | 5x-6x-6=-x-6 | | 2y+5y-6+8y=10+6 | | b+4.9=4.7 | | 7a+19=180 | | y=(51.724*0.025)-3E-16 | | 7z+8-4z=9+2z+7 | | 9x^2-47x+80=0 | | 6(3)-5y=30 | | -90z-0.1=-100z+1.2 | | x=1200-2x-3x | | 2z^2-5z-5=0 | | 5(r+9)−2(1−r)=1. | | -(3x-6)-(2-3x)=16 | | -2(x)+.5(x)=1(x) | | 5+9x-3-5x=10 |